This is a list of parts you need to order to complete the SBC6120/FP6120 partial kit offered by Spare Time Gizmos.
The notes can be safely ignored, if all you want to do is order the parts for the SBC6120/FP6120 kit. Please read the notes (and manual!) before assembly, though--some parts need mods.

Reference	Qty In Kit?		SBC/FP	Manufacturer	Part No.	Supplier	Stock No.	Description	Notes
U4	1	Y	SBC	Atmel	ATF16V8B15PC	Arrow		IC CMOS PLD (Flash)	Programmed as MEM
U12, U11	2	Y	SBC	Atmel	ATF22V10B15PC	Arrow		IC CMOS PLD (Flash)	Programmed as IOT1,2
J4	1	Y	SBC	Samtec	ESQ-125-14-G-D	STG		header 50 pin female, stackable	Expansion connector updated part
U1	1	N	SBC	CTS Reeves	MXO45HS-3C-5M0000	Digi-Key	CTX746-ND	oscillator 5.0000 MHz half size clock	Insulate top if socketed. CTX-157 not stocked. (Note-18)
U23	1	N	SBC	CTS Reeves	MXO45HS-3C-4M9152	Digi-Key	CTX763-ND	oscillator 4.9152 MHz half size clock	Insulate top if socketed. CTX156 not stocked.
D2	1	N	SBC	Dialight	555-4403F	Digi-Key	350-1798-ND	LED quad indicator with integral resistors for POST code	New stock number
J3	1	N	SBC	3M	2510-5002	Digi-Key	MHD10K	header 10 pin low profile right angle shrouded	RS232 connector
J2	1	N	SBC	3M	2540-5002	Digi-Key	MHD40K	header 40 pin low profile right angle shrouded	IDE connector
F1	1	N	SBC	Littelfuse	0473.500MAT1L	Digi-Key	F1968CT-ND	picofuse 0.5 A	New stock/part numbers
U9, U10	2	Y	SBC		27 C 256	Jameco	39845	IC $32 \mathrm{~K} \times 8$ CMOS EPROM (250ns)	Programmed as "LOW, HIGH"
U16	1	N	SBC		HD6402	Jameco	43158	IC CMOS UART	
U17	1	N	SBC	Maxim	MAX232CPE	Jameco	24811	IC Dual +5V only RS-232 transmitter/receiver	
U18	1	N	SBC		82C55A-5	Jameco	52425	IC CMOS Programmable Peripheral Interface (5MHz)	
D1	1	N	SBC		1N4734	Jameco	36118	diode Zener 6.0V 500 mW DO-41	New stock number
S1	1	N	SBC	Valuepro	G13210-R	Jameco	71643	switch PC mount right angle push button	Direct substitute
C37 FP:C7	2	N	SBC/FP	Valuepro	TM47/16	Jameco	94123	capacitor 47 uF 16 V radial lead tantalum	(Note-6) 1 for FP
C32, C31, C30, C29, FP:C1	5	N	SBC/FP	Valuepro	TM1/25	Jameco	154860	capacitor 1 uF 25 V radial lead tantalum 10\%	
J1	1	N	SBC	Molex	15-24-4441	Mouser	538-15-24-4441	header 4 pin right angle male	Power connector Original obsolete (Note-3)
	2	N	SBC	Valuepro	240434	Jameco	676385	socket half-DIP machined 4 pin for oscillator	Added
	6	N	SBC/FP	Valuepro	6100-14-R	Jameco	37197	socket DIP machined 14 Pin	Added small SBC dips. 2 for FP
	10	N	SBC/FP	Valuepro	6100-16-R	Jameco	37402	socket DIP machined 16 Pin	Added small SBC dips. 6 for FP
	7	N	SBC/FP	Valuepro	6100-20	Jameco	38623	socket DIP machined 20 Pin	3 for FP
	6	N	SBC/FP	Valuepro	T/W 6100-24	Jameco	39386	socket DIP machined 24 Pin 0.3 " width	1 for FP
	2	N	SBC	Valuepro	6100-28	Jameco	40328	socket DIP machined 28 Pin 0.6 " width	
	3	N	SBC	Valuepro	6100-40D	Jameco	41136	socket DIP machined 40 Pin 0.6 " width	
J11-J14 FP:JP1, JP2	6	N	SBC/FP	Valuepro	7000-1X2SG-R	Jameco	108338	header 2 pin (jumper)	Stock no. corrected. Gold added. 2 for FP
J11-J14 FP:JP1, JP2	6	N	SBC/FP	Valuepro	7600-B-R	Jameco	22024	header shunt for jumpers	Added. 2 for FP
J10	1	N	SBC	On Shore Tech	PH1-787/120-041	Jameco	2120276	header 2-pin wire-wrap connector above SBC board	(Note-8)
U3, U2 FP:U1,U2	4	N	SBC/FP	Texas Instruments	74HC373	Mouser	595-SN74HC373N	IC Octal D latch	
U13	1	N	SBC	Texas Instruments	74HC365	Mouser	595-SN74HC365N	IC Hex tri-state buffer	
U14	1	N	SBC	Texas Instruments	74HC245	Mouser	595-SN74HC245N	IC Octal tri-state buffer	
U15	1	N	SBC	Texas Instruments	74HC4040	Mouser	595-SN74HC4040N	IC 12 stage binary ripple counter	
U19 FP:U12	2	N	SBC/FP	Texas Instruments	74HC05	Mouser	595-SN74HC05N	IC Hex inverter with open drain outputs	
U22, U20, FP:U11	3	N	SBC/FP	Texas Instruments	74HC74	Mouser	595-SN74HC74N	IC Dual D flip-flop	
U21	1	N	SBC	Texas Instruments	74HC175	Mouser	595-SN74HC175N	IC Quad D flip-flop	
U24	1	N	SBC	Texas Instruments	74HC04	Mouser	595-SN74HC04N	IC Hex inverter	
U99	1	N	SBC	Dallas Semi	DS1233D-10	Mouser	700-DS1233D-10	IC 5V EconoReset TO-92 package 10\% threshold	
U5	1	Y	SBC	Harris	HD6120			IC 12 bit microprocessor	
U8, U7, U6	3	Y	SBC	Hitachi	HM6208HP			IC 64K x 4 static RAM	supplied as MB81C84
	1	Y	SBC	STG	SBC6120-2D			PCB SBC6120 REV D PC Board	
C1-C22 FP:C9-C16, C18-C21	34	N	SBC/FP	Kemet	C320C104K5R5TA	Mouser	80-C320C104K5R	capacitor 0.1 uF 50 V mono ceramic ($0.1{ }^{\prime \prime}$ lead spacing)	12 for FP
R6	1	N	SBC	Stackpole	CF18JT4K70	Digi-Key	CF18JT4K70CT-ND	resistor 4.7K 5\% 1/8W	(Note-10)
R1-R5, R8, R10 FP:R3-R4	9	N	SBC/FP	Stackpole	CF18JT10K0	Digi-Key	CF18JT10K0CT-ND	resistor 10K 5\% 1/8W	(Note-7)
U3, U4	2	N	FP	Texas Instruments	74HC174	Mouser	595-SN74HC174N	IC Hex D flip-flop	
U5, U6, U9, U10	4	N	FP	Texas Instruments	74HC366 or 368	Mouser	595-CD74HC366E	IC Hex Tri-State Inverting Buffer	
U7	1	Y	FP	Atmel	ATF22V10B15PC	Arrow		IC CMOS PLD (Flash)	Programmed as CONTROL or CTL
U8	1	N	FP		TLC555CP	Mouser	595-TLC555CP	IC CMOS Timer	Similar to 7555
U13	1	Y	FP	Atmel	ATF16V8B15PC	Arrow		IC CMOS PLD (Flash)	Programmed as DECODE or DEC
REG1	1	N	FP	Murata	78SR-5/2-C	Digi-Key	811-1119-ND	module 5V 2A Switching Regulator 3 pin SIP	Modify per Note-5
D1	1	N	FP	Vishay Semi	1 1 5820	Digi-Key	1N5820GICT	diode Schottky 3A 20V DO-201	
D2	1	N	FP	ON Semi	1 N5339BG	Digi-Key	1N5339BGOS-ND	diode Zener 5.6V 5\% 5.0W T-18	
F1	1	N	FP	Littelfuse	0473002.MRT1L	Digi-Key	F2342CT-ND	picofuse 2A	New part numbers
R1	1	N	FP	Vishay Dale	CMF5010K000FHEB	Digi-Key	CMF10.0KQFCT-ND	resistor 10.0K 1\% 1/8W	5% okay. Original obsolete.1/4W sub fits
R2	1	N	FP	Vishay Dale	CMF5017K400FHEB	Digi-Key	CMF17.4KQFCT-ND	resistor $17.4 \mathrm{~K} 1 \% 1 / 8 \mathrm{~W}$	18K 5\% okay. Original obsolete.1/4W sub fits
RP1, RP2	2	N	FP	Bourns	4310R-101-331LF	Digi-Key	4310R-1-331	resistor SIP pack 330 ohm 10 Pin	(Note-13)
RP3, RP4	2	N	FP	Bourns	4308R-101-331LF	Digi-Key	4308R-1-331	resistor SIP pack 330 ohm 8 Pin	(Note-13)
RP5, RP6	2	N	FP	Bourns	4308R-101-472LF	Digi-Key	4308R-1-472	resistor SIP pack 4.7K ohm 8 Pin	
RP7	1	N	FP	Bourns	4310R-101-472LF	Digi-Key	4310R-1-472	resistor SIP pack 4.7K ohm 10 pin	
RP8	1	N	FP	Bourns	4306R-101-472LF	Digi-Key	4306R-1-472	resistor SIP pack 4.7K ohm 6 pin	
C2	1	N	FP			Digi-Key	399-1906	UNUSED capacitor 0.01 uF 10VDC Mono ceramic	

Notes

(1) - Samtec ESQ-125-14-G-D available direct from samtec.com (\$8 plus $\$ 15 \mathrm{~S} / \mathrm{H}$) or newark.com ($\$ 10$ plus S/H). Alternative Digi-Key A115364-ND (\$18 plus) okay for (FP) J2 (untested), not for (FP) J1.
(2) - Would need to drill a 0.75 " hole in bottom of case to access the power switch. Personally, I will leave out PLOCK (no jumper needed), jumper the trace for S 1 and mount a suitable power switch on the back panel of the case.
(3) - SBC gets power from FP via the 50pin bus so J1 inn't used to power the SBC when installed on the FP board. However, I will use it to PROVIDE power to the CFIIDE adapter.
(4) - Run DC plug from wall xfmr through rear panel to J3.
(5) - Original part obsolete. Modify 78 SR- $5 / 2-\mathrm{C}$ by bending the pins 90 -deg so they project straight out from the module's PCB. Ferrite inductor faces down on the FP PCB. Note that horizontal version of this part pinout is reversed from what we need.
(6) - FP parts list shows C7 unused. C7 is shown on schematic as 1 uF at the switcher input. I'm putting C7 back in as 47 uF tantalum due to regulator spec and to help EMI.
(6) - FP parts ist shows C
(7) - Schem has SBC R8=4.7K, which is wrong (per IDE spec) but the PL (10K) was correct.
(7) - Schem has SBC R8=4.7K, which is wrong (per IDE Spec) but the PL (10K) was
(8) - Mates with FP board J5. Cut off two of the four pins. Cut length to fit correctly.
(8) - Mates with FP board J5. Cut off two of the four pins. Cut length to fit correctly.
(9) - Aluminum won't fit the layout. Also tantalum chosen to suppress switcher ripple.
(9) - Aluminum won't fit the layout. Also tantalum chosen to suppress switcher ripple.
(10) - SBC R6 was shown as 10 K in schem but 4.7 K in PL. Going with 4.7 K since that provides faster response.
(10) - SBC R6 was shown as 10 K in schem but 4.7 K in PL. Going with 4.7 K since that provides faster response.
(11) - DC power plug must be right-angle (R/A) to clear the bottom of wooden case. AC adapters with R/A plugs are uncommon but we can solder one on an existing AC adapter. Make the center positive.
(12) - Original PL showed qty-20 standoffs. FP manual shows qty-25: 7- LED bar, 4 - CF card, 4 -IDE drive, 5 - SBC board, 5 -IOB board. I added one extra, making 26 . Of course, you may wish to leave some out.
(13) - Original SIPs were 560 ohms giving about 5 mA LED current. That seems low and the manual hints about socketing the SIPs to change the current. The 330 ohm ones here give about 8.3 mA which is max for the chips.
(14) - The PL said $1 / 4$ " nylon screw but the manual (p.9) says $3 / 8 "$ ". Going with $3 / 8$ " because that should be a little better with the $1 / 2$ " spacer.
(15) - After soldering-in swage standoffs in IDE disk drive locations, drill out clearance holes in the (4) standoffs to pass the M3 screws. These secure the CF to IDE adapter.
(16) - Cut a female connector from the disk drive power Y-adapter, to replace the male power connector of the 44-pin to 40-pin IDE adapter, AD2. We need this to get power from the male power connector on the SBC. Ref Note-3.
(17) - You can easily find cheaper, bigger, faster cards than this $\$ 201 \mathrm{~GB}$ card. But neither size nor speed matters here and there are lots of reports of unreliable cards. This one had better user ratings on Newegg.
(18) - The SBC6120 may be able to run at 8 MHz .
(19) - I did not use this exact adapter but am reasonably convinced that its "industry standard" pinout matches the SBC6120 header.
(20) $-3 / 16$ " screws for fastening the SBC to the FP are provided with the partial kit but after going through the PCB, they fall short of the minimum three turns of purchase.

